

∗ This work was funded by Communications and Information Technology Ontario

1

Locating a Faulty Machine in a System of Communicating Finite State Machines∗

Khaled El-Fakih and Gregor v. Bochmann

School of Information Technology and Engineering, University of Ottawa, Canada
{kelfakih, bochmann} @site.uottawa.ca

Abstract
In this paper, we propose a diagnostic method for the
case where the system specification (implementation)
is given in the form of two communicating finite state
machines (CFSMs). The method decides if it is
possible to locate the faulty machine in the system,
once a fault has been detected in its corresponding
implementation. If this is possible, it also locates the
faulty machine. Two simple examples are used to
demonstrate the different steps of the method.

1. Introduction

Testing is an important step in the development cycle
of both software and hardware systems. In the
software domain, where a system is represented by an
FSM model, a lot of research work has been directed
for such tests (for surveys of test derivation see [1]
and [2]).

We consider a system architecture consisting of two
FSM machines called components, as shown as
“System Under Test” in Figure 1. The system
contains a machine, called “Context machine” which
communicates with the environment and the other
machine, called “Embedded machine”. The
interactions between the two components (the
embedded machine and the context) is assumed to be
hidden or unobservable.

In this paper, we present an important
complementary step to testing the given system once
a fault has been detected in its implementation. The
method consists of a new diagnostic method that
decides if it is possible to locate the faulty component
in the given system. If this is possible, the faulty
machine is found.

The method starts by identifying the difference
between how the system should behave
(expectations), and how it is actually behaving
(observations). The difference between these
expectations and observations are called symptoms.
In order to explain these symptoms, diagnostic
candidates for both components are generated.
A diagnostic candidate is defined to be the minimal
difference between the specification of a given
machine and its corresponding implementation,
capable of explaining all symptoms. If there are no
candidates generated for one of the components then
the other component is declared faulty. Otherwise,
the method continues to locate the faulty machine.

This paper is organized as follows. In section 2,
a system of two CFSMs is presented. In Section 3,
a fault model for the given systems is defined.
In Section 4, the diagnostic method is described in
details followed by two simple examples that
demonstrate its different steps in Section 5. Section 6
concludes the paper.

2. A System of Two CFSMs

Complex systems are often specified as a collection
of communicating FSMs. A system of two
communicating FSMSs, called embedded machine
(M2) and context machine (M1), is shown in the
upper part of Figure 1. The alphabet X and Y
represent the externally observable input/output
actions of the system, while the U and Z alphabets
represent the internal (hidden) input/output
interactions between the two components. As in [3],
we assume that the sets of actions X, Y, U, and Z are
pair-wise disjoint.

 2

Tests Reference System

Embedded machine
(M2)

Context machine
(M1)

System Under Test

YU Z

X

Actual Output

Expected Output

Figure1. A system of two CFSMs and a their Tester

For the rest of the paper, we assume that the two
(deterministic) FSMs , M1 and M2, of the given
system communicate asynchronously via bounded
input queues where the internal actions of U and Z
are stored.

A deterministic FSM Mi (i = 1, 2) in such a system
of 2 CFSMs can be represented by a quintuple
(Si, Ii, Oi, NextStaFunci, OutFunci) where :

Si is the set of states of Mi. It includes the initial state
si0,
Ii is the set of input symbols. It includes the reset
input (r),
Oi is the set of output symbols. It includes the null
output (-),
The next-state function is NextStaFunci: Si x Ii → Si,

The output function is OutFunci : Si x Ii → Yi.

We also assume that the system at hand has never
more than one message in transit, i.e. a next external
input is submitted to the system only after it has
produced an external output y to the previous input.
Under these assumptions, the joint behavior of M1
and M2 can be described by means of a composed
machine, called Reference System, RS=M1 ° M2.
RS describes the joint behavior of M1 and M2 in
terms of external inputs x and external outputs y.
Consider for example the two machine M1 and M2 as
shown in Figure 2, and their corresponding Reference
System RS = M1 ° M2 as shown in Figure 3. The set
of external inputs is X={x1, x2, x3}, the set of external
outputs is Y = {y1, y2, y3}, the set of internal inputs is
U ={u1, u2, u3}, and the set of internal outputs is
Z = { z1, z2, z3 }.

S1 S'2

t1: x1/u1

t2:x2/u2

t4:z1/y1

t6:z3/y3

t'1: u1/z1

t'3: u3/z3

t'2: u2/z2

M1 M2

t3:x3/u3
t5:z2/y2

U

X Y

Z

Figure 2. A system of two CFSMs, M1 and M2.

 3

S1

x1/y1

x3/y3

x2/y2

Figure 3. Reference System of the M1 and M2 of

The tester, lower part of Figure 1, implements a
given test by executing external input sequences (test
cases) simultaneously against both the system under
test (SUT) consisting of the implementation of M1
and M2, and the reference system in order to generate
the observed and expected outputs.

3. Fault Model for the System of CFSMs

We assume a fault model which is based on faults
made on labeled transitions [4]. Here, we assume
that one and only of the two machines of the given
system has a single output fault. We say a transition
has an output fault if, for the corresponding state and
received input, the implementation of the component
provides an output different from the one specified
by the output function. An implementation has a
single output fault if one and only one of its
transitions has an output fault.

4. A Method for Locating the Faulty Machine in

the Given System

We assume that a test suite (TS) is given and that at
least one erroneous output is detected. We apply the
TS to the SUT and the reference system. For each test
case tci of TS, the expected output sequence is
written as oi = oi,1,oi,2,...,oi,mi , where output oi,j is
expected after input ii,j, while the observed output
sequence is written as: ôi = ôi,1,ôi,2,...,ôi,mi. We
compare the observed outputs with the expected
outputs and identify all symptoms. Any difference
(oi,j ≠ ôi,j) represents a symptom.

For each symptom (oi,j ≠ ôi,j), and for each machine
Mi in the system (i=1,2), we do the following:

(i) To determine a corresponding conflict paths.
A conflict path for a given symptom is the

sequence of transitions that are supposed to be
executed by the machine, according to the
specification of the two components, for the
generation of the symptom output; therefore, at
least one of these transitions must be faulty if the
given machine contains the fault. For example,
the conflict path for machine Ml is formed by all
transitions executed by Ml when the
corresponding test case is applied. No transitions
executed after the observation of the symptom in
a test case will be included in the conflict path.

(ii) To determine the transitions which are
suspected to be faulty (called tentative candidate
transitions), we form the intersection of the
transitions of all conflict paths of (i). For each
tentative candidate transition Tk of machine Mi,
we form its corresponding tentative diagnostic
candidates. These are candidates that may
succeed to explain the observable behavior of the
given SUT. Each candidate is formed by
computing and assigning to Tk a possible output
fault and by leaving all remaining transitions of
Mi unchanged. This process is repeated for all
faulty outputs of Tk (all outputs except the
specified output).

(iii) Afterwards, we eliminate from the tentative
diagnostic candidates all candidates that do not
succeed to explain all observations of the SUT.
A particular tentative diagnostic candidate fails
to explain all observations, if its expected
outputs are not equal to the observed outputs of
the SUT for at least one test case of TS. All
remaining candidates are considered as
diagnostic candidates.

Let NumCandM1 be the number of diagnostic
candidates of M1 and DCM1,k (k = 1… NumCandM1)
be the diagnostic candidates of M1. Let NumCandM2
be the number of diagnostic candidates of M2 and
DCM2,k (k = 1… NumCandM2) be the diagnostic
candidates of M2.

If NumCandM1 = 0, then M2 is the erroneous
machine, and if NumCandM2 = 0 then M1 is
erroneous, else we proceed as follows:
a- From : DCM1,k ° M2 for k =1… NumCandM1
b- From : DCM2,k ° M1 for k =1… NumCandM2

Two FSMs are said to be equivalent if and only if for
all possible input sequences, they produce the same
output sequences. If any of the machines computed in
(a) is equivalent to any machine computed in (b),
then the faulty machine (M1 or M2) can not be

 4

identified. This is due to the fact that there is at least
one possible fault in M1 and a possible fault in M2
such that the behavior of the composed system for
both of these possible faults is the same. However, if
none of the machines computed in (a) is equivalent to
any machine computed in (b), we can locate the
faulty machine as follows:

We generate additional tests for distinguishing
between the diagnostic candidates using the test
development approach described by Gill [4]. This
method determines a test sequence which allows the
distinction between any two given finite state
machines. In our context, each diagnosis, DCMi,k °
Mj (for i, j = 1,2, j # i, k ≤ NumCandMi)
corresponds to a particular (faulty) implementation of
Mi determined by its k-th fault predicted by DCMi,k
and the assumed non-faulty implementation of Mj.

Given a set of n diagnoses, Gill's method may be
applied to distinguish between any two selected
diagnoses, say D(1) and D(2). The application of the
derived test sequence to the implementation will lead
to one of the following situations:

(1) The observed output is equal to the one expected
for D(1).

(2) The observed output is equal to the one expected
for D(2).

(3) The observed output is different from both of the
outputs expected for D(1) and D(2).

In cases (1) or (2), we know that D(2) or D(1),
respectively, is a wrong diagnosis. In case (3), we
know that both, D(1) and D(2) are wrong diagnosis. We
have therefore reduced the number of possible
diagnoses and may continue until only one diagnosis
remains.

5. Two Application Examples

In the following two subsections, two examples are
given to demonstrate the different steps of the
diagnostic method described in Section 4. In these
examples, a reset transition tr is assumed to be
available for both the specification and the
implementation. We use the symbol "r" to denote the
input for such a transition and the null symbol "-" to
denote its output. A reset input r resets both
machines in the system to their initial states.

5.1. A Simple Example

 Suppose that the test suite TS = {r-x1, r-x2, r-x3 } is
given for the two CFSMs specification shown in
Figure 2 .

The application of TS to the specification of Figure 2
and its corresponding implementation of M1 and M2
(which equal to the specification with the exception
that t1 of M1 has the output fault u2) yields the
expected and observed output sequences depicted in
Table 1.

Tc#

tc1 tc2 tc3

Inputs

r, x1 r, x2

r, x3

Specified
transitions

t1, t’1, t4 t2, t’2, t5

t3, t’3, t6

Expected Output

y1 y2

y3

Observed Output y 2 y2

y3

Table1. Test cases and their outputs

A difference between observed and expected outputs
is detected for test cases tc1. Therefore, the symptom
is: Symp1 = (o

tc1,1
 # ô

1,1
)

Corresponding to the above symptom, we determine
the following conflict paths for both machines M1
and M2, which are equal to tentative candidate faulty
transitions for this particular example:
 ConfpM11 = t1, t4

 ConfpM21 = t’1

Corresponding to these tentative candidate
transitions, we compute the following tentative
diagnostic candidates for M1 and M2:

TdiagcM1

1 = M1 where t1 has been changed to x1/u2
instead of x1/u1
TdiagcM1

2 = M1 where t1 has been changed to x1/u3
instead of x1/u1
TdiagcM1

3 = M1 where t4 has been changed to z1/y2
instead of z1/y1
TdiagcM1

4 = M1 where t4 has been changed to z1/y3
instead of z1/y1
TdiagcM2

1 = M2 where t’1 has been changed to u1/z2
instead of u1/z1
TdiagcM2

2 = M2 where t’1 has been changed to u1/z3
instead of u1/z1

 5

Notice that TdiagcM1

2 , TdiagcM1
4 , and TdiagcM2

2
do not explain all observable outputs of the SUT, and
thus are not considered as diagnostic candidates. For
example, if the fault is as specified in TdiagcM1

2 (t1:
x1/u3), the SUT should produce for the external
output y2 for the external input r-x1 of Tc1; however,
it produces the external output y2 as shown in Table
1. The remaining tentative diagnostic candidates are
considered as diagnostic candidates DiagcM1

1,
DiagcM1

3 , and DiagcM2
1, respectively. For these

candidates, we form the following composed
machines DiagcM1

1 ° M2, DiagcM1
3 ° M2, and

DiagcM2
1 ° M1. These machines are equivalent, and

therefore we can not determine which machine is
faulty by testing the composed system in the given
architecture.

5.2 A More Complex Example

Suppose that the test suite TS = {r-x1-x1, r-x2-x1-x2-
x1} is given for the two CFSMs specification shown
in Figure 4 .

The application of TS to the specification of Figure 4
and its corresponding implementation of M1 and M2
(which equal to the specification with the exception
that t’3 of M2 has the output fault z3) yields the
expected and observed output sequences depicted in
Table 2.

A difference between observed and expected outputs
is detected for the test cases tc1 and tc2. Therefore,
the symptoms are:
Symp1 = (o

tc1,2 # ôtc1,2
)

Symp2 = (otc2,4
 # ôtc2,4

)

Let us start by determining the conflict paths,
tentative diagnostic candidates, and the diagnostic
candidates of M1. Corresponding to the above
symptoms, we determine the following conflict paths
for machine M1:

 ConfpM11 = t1, t4, t4

 ConfpM12 = t2, t5, t1,t4, t2, t3 ,t1, t4

The tentative candidate transitions that correspond to
the above conflict paths are t1, and t4.
Corresponding to these transitions, we compute the
following tentative diagnostics:

TdiagcM1

1 = M1 where t1 has been changed to x1/u2
instead of x1/u1
TdiagcM1

2 = M1 where t4 has been changed to z2/y1
instead of z2/y2
TdiagcM1

3 = M1 where t4 has been changed to z2/y3
instead of z2/y2

The reader can check that all these tentative
candidates do not explain the observable behavior of
the given SUT. For example, if the fault is as
specified in TdiagcM1

1 (t1:x1/u2), the SUT should
produce the external output y3 for the external input
r-x1 of tc1; however, it produces y2 as shown in
Table 2. Therefore, M1 cannot be the faulty machine.
The fault must be located in M2. Actually, for this
example, the diagnostic candidate of M2 that
explains all observed outputs of the given SUT, is
where t’3 of M2 has been changed from u1/z2 to
u1/z3.

S1 S'1 S'2

t1: x1/u1

t3:z1/y1t4:z2/y2

t5:z3/y3

t'1: u1/z2

t'3: u1/z2t'4: u2/z3 t'2: u2/z1

M1 M2

t2:x2/u2

Z

X Y

U

Figure 4. A system of two CFSMs M1 and M2.

 6

tc#

tc1

tc2

Inputs r, x1, x1

r, x2, x1, x2, x1

Specified transitions

t1, t’1, t4, t1, t’3, t4 t2, t’4, t5, t1, t’1, t4, t2, t’2, t3, t1, t’3, t4

Expected Outputs y2 y2 y3 y2 y1 y2

Observed Outputs y2 y3

y3 y2 y1 y3

Table 2. Test cases and their corresponding outputs

6. Conclusion and future work

In this paper, we proposed a diagnostic method that
decides if it is possible to locate the faulty machine in
a system of two CFSMs, once a fault has been
detected in its implementation. If this is possible, it
also locates the faulty machine. Currently, we are
enhancing our method to cover an extended fault
model. This fault model would also cover transfer
faults. We say that a transition has a transfer fault if,
for the corresponding state and received input, the
implementation enters a different state than specified
by the next-state function.

References

[1] D.P. Sidhu and T.K. Leung, “Formal methods for
protocols: A detailed study”, IEEE Trans. SE-15, 4,
1989.

[2] G. v. Bochmann and A. Petrenko,“Protocol testing:
Review of methods and relevance for software
testing”, Département IRO, Publication
départementale #107, Université de Montréal, June
1994.

[3] A. Peternko, N. Yevtushino, G.v. Bochmann, R.
Dssouli,(1996) “Testing in context: Framework and
test derivation”, Computer Communications Journal,
Special issue on protocol engineering 19, pp.1236-
1249.

[4] A. Gill, Introduction to the Theory of Finite State
Machines, McGraw-Hill, New York, 1962

